Mostrar registro simples

dc.contributor.authorPEGORELLI NETO, A.
dc.contributor.authorFlavio Tonidandel
dc.date.accessioned2022-08-01T06:02:50Z
dc.date.accessioned2024-02-27T16:29:40Z
dc.date.available2022-08-01T06:02:50Z
dc.date.available2024-02-27T16:29:40Z
dc.date.issued2022-04-05
dc.identifier.citationPEGORELLI NETO, A.; TONIDANDEL, F. Analysis of WiFi localization techniques for kidnapped robot problem. 2022 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2022, April, 2022.
dc.identifier.urihttps://hdl.handle.net/20.500.12032/122135
dc.description.abstract© 2022 IEEE.This work proposes an analysis of the earliest indoor localization techniques based on recurrent neural networks (RNN) like Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM), including k-Nearest Neighbors (KNN) machine learning, to process WiFi received signal strength data (RSS) for the kidnapped robot problem (KRP). The proposed solutions uses processed data generated in a Webots simulation of the iRobot Create robot, with the RSS signals simulated based on fingerprinting data from a real indoor area with 6 dedicated access points as reference. The efficiency of each system is evaluated using cumulative distribution function for several access point combinations, noise and vanishing levels for a model trained with the base test parameters from the reference material, with all 6 access points (APs) activated, ldBm Gaussian noise, 10% masking level and using 10 time steps of data as history inputs. The results show that RNN systems can achieve mean localization accuracy between $0.44\mathrm{m}\pm 0.39\mathrm{m}$ for LSTM and $0.50\mathrm{m}\pm 0.38\mathrm{m}$ for GRU and the KNN proposal reaching $0.68\mathrm{m}\pm 0.73\mathrm{m}$, proving the capability of those systems to recover from a KRP event keeping similar results obtained without any event.
dc.relation.ispartof2022 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2022
dc.rightsAcesso Restrito
dc.titleAnalysis of WiFi localization techniques for kidnapped robot problem
dc.typeArtigo de evento


Arquivos deste item

ArquivosTamanhoFormatoVisualização

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP