Show simple item record

dc.contributor.advisorOchoa Arango, Jesus Alonso
dc.contributor.authorNeira Lopez, Santiago
dc.date.accessioned2022-12-07T18:41:43Z
dc.date.accessioned2023-05-11T19:14:47Z
dc.date.available2022-12-07T18:41:43Z
dc.date.available2023-05-11T19:14:47Z
dc.date.created2022-11-24
dc.identifier.urihttps://hdl.handle.net/20.500.12032/112278
dc.description.abstractThis work is a review of the congruent zeta function and the Weil conjectures for non-singular curves. We derive an equation to obtain the number of solutions of equations over finite fields using Jacobi sums in order to compute the Zeta function for specific equations. Also, we introduce the necessary algebraic concepts to prove the rationality and functionality of the zeta function.spa
dc.formatPDF
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherPontificia Universidad Javeriana
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectWeil Conjectures
dc.subjectCongruent Zeta function
dc.subjectEquations over finite fields
dc.subjectGauss sum
dc.subjectJacobi sum
dc.subjectNonsingular Complete Curves
dc.subjectDivisors
dc.subjectRiemann-Roch Theorem
dc.titleEquations over finite fields: Zeta function and Weil conjecturesspa


Files in this item

FilesSizeFormatView
attachment_0_Tesis-Santiago-Neira.pdf406.6Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP