Equations over finite fields: Zeta function and Weil conjectures
dc.contributor.advisor | Ochoa Arango, Jesus Alonso | |
dc.contributor.author | Neira Lopez, Santiago | |
dc.date.accessioned | 2022-12-07T18:41:43Z | |
dc.date.accessioned | 2023-05-11T19:14:47Z | |
dc.date.available | 2022-12-07T18:41:43Z | |
dc.date.available | 2023-05-11T19:14:47Z | |
dc.date.created | 2022-11-24 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12032/112278 | |
dc.description.abstract | This work is a review of the congruent zeta function and the Weil conjectures for non-singular curves. We derive an equation to obtain the number of solutions of equations over finite fields using Jacobi sums in order to compute the Zeta function for specific equations. Also, we introduce the necessary algebraic concepts to prove the rationality and functionality of the zeta function. | spa |
dc.format | ||
dc.format.mimetype | application/pdf | |
dc.language.iso | spa | |
dc.publisher | Pontificia Universidad Javeriana | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Weil Conjectures | |
dc.subject | Congruent Zeta function | |
dc.subject | Equations over finite fields | |
dc.subject | Gauss sum | |
dc.subject | Jacobi sum | |
dc.subject | Nonsingular Complete Curves | |
dc.subject | Divisors | |
dc.subject | Riemann-Roch Theorem | |
dc.title | Equations over finite fields: Zeta function and Weil conjectures | spa |
Files in this item
Files | Size | Format | View |
---|---|---|---|
attachment_0_Tesis-Santiago-Neira.pdf | 406.6Kb | application/pdf | View/ |