Show simple item record

dc.contributor.advisorKulakowski, Marlova Piva
dc.contributor.authorMantovani, Franciéli
dc.date.accessioned2015-06-23T17:59:08Z
dc.date.accessioned2022-09-22T19:14:00Z
dc.date.available2015-06-23T17:59:08Z
dc.date.available2022-09-22T19:14:00Z
dc.date.issued2014-04-04
dc.identifier.urihttps://hdl.handle.net/20.500.12032/58475
dc.description.abstractThe development of materials with advanced technology is part of the modernization process that construction area is facing. The improvement of colored concrete produced with pigments deserves special attention for their physical and chemical properties allied to aesthetic issues, which allows the use of apparent colored concrete elements susceptible to weather attack. The incorporation of resistant and high power coloring pigments allows the use of colored apparent concrete, eliminating excessive expenses with maintenance coatings. The use of fly ash (FA) can bring improvements in the properties of concrete, as well as, from the replacement of cement, leads to increase the sustainability and eco-efficiency of the building. Many of the pigments used in the actual colored concrete production are originate from metal oxides, particularly iron oxides. Some wastes contain iron in its composition, such as phosphate sludge (FS), a waste of the metalworking industry generated by the treatment of effluents in the process of steel phosphate coating. In this context, the aim of this research is to evaluate the feasibility of using phosphate sludge as a pigment, combined with white Portland cement and fly ash. As the concrete mortar is responsible for the coloration of the face side of a concrete, this fraction was employed on this experimental program as a pattern to conduct the tests with a single cement and sand ratio and a water/binder ratio of 0.40. For comparison, an inorganic pigment, commercially available, was also used. According to current practice in the production of colored concrete, and according to the pigment manufacturer, the levels used were: 0 %, 1% and 5% by mass of cement, replacing natural aggregate by volume. Similarly, the phosphate sludge was used in concentrations of: 0 %, 5 %, 10% and 20%. The influence of white Portland cement replacement by fly ash, with levels of 0%, 10% and 20%, was also evaluated. The tests included compressive strength in cylindrical specimens at ages of 7 and 28 days and tensile strength in bending, at 28 days, in prismatic specimens. The tests of water absorption by capillarity and shrinkage, evaluated the physical behavior of mortars. The color control was performed by the spectrophotometric method, monitoring the parameters L*a*b* and ∆E in specimens submitted to two states of exposure: witnessing and natural. To investigate which factors have a significant effect on the response variables, all experimental results were statistically analyzed using an ANOVA. The results show that, on average, fly ash benefited most of the studied properties with also an environmental gain by being able to reduce the consumption of cement without causing losses in relation to the durability and the mechanical strength. The contents of pigments studied were considered significant for almost all variables, representing a decrease in values for tests of compressive strength while increasing its content. However, both types of the studied pigments brought benefits in relation to the rate of shrinkage and capillarity absorption. As for the chromaticity, the FS pigmentation was less intense than that provided by the inorganic pigment. Anyway, the values showed similar color variation, which can indicate some stability in the cementitious matrix. It was observed that the incorporation of FA not bring damage to color.en
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectLodo de fosfatizaçãopt_BR
dc.subjectPhosphate sludgeen
dc.titleViabilidade do uso de lodo de fosfatização como pigmento em matriz de cimento Portland brancopt_BR
dc.typeDissertaçãopt_BR


Files in this item

FilesSizeFormatView
Franciéli Mantovani..pdf7.765Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP