Show simple item record

dc.contributor.advisorGorninski, Jane Proszek
dc.contributor.authorTonet, Karina Guerra
dc.date.accessioned2015-05-15T13:16:30Z
dc.date.accessioned2022-09-22T19:11:50Z
dc.date.available2015-05-15T13:16:30Z
dc.date.available2022-09-22T19:11:50Z
dc.date.issued2009-04-16
dc.identifier.urihttps://hdl.handle.net/20.500.12032/58053
dc.description.abstractRecycling and the reincorporation of a waste in a production process are the most indicated for the management of the vast majority of waste, thus reducing costs, and, of course, preserving non-renewable natural resources. The civil construction has absorbed these wastes, turning them into important products, which can also be efficient, and environmentally correct. Among the most common applications, it can emphasize the incorporation of tailings in cementations and polymer matrices. The polymer concrete, which binder is a polymeric resin, has become a good option for construction where are required applications with high mechanical performance, durability and rapid healing, important properties for materials aimed at the sustainability of buildings. Despite the already proven high mechanical values found in these composites, it is necessary to estimate and adjust the properties of combustibility to the kinds of demands of the market, once this property may jeopardize your application. Thus, this research aims to produce polymer concrete composites of high mechanical strength, durability and resistance to the action of fire. The composites were produced with an unsaturated polyester resin from recycled PET, with the addition of industrial waste in comparison to commercial items, making them more attractive economically, and environmentally sustainable. Thus, the properties of the composites were studied by mechanical tests durability, including: compressive strength test, tensile strength, mercury intrusion porosimetry and SEM. Moreover, the samples were tested for thermal analysis in order to know the behavior of the action items with the fire and its contribution to reducing the flammability of these composites. The results obtained in the tests described above showed that, the composites with 60% in addition of waste had a reduction of 85% in the time of spread of flame, and an increase in its mechanical resistance in comparison to composite reference, with no addition of retardants.en
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectResina reciclada de PETpt_BR
dc.subjectRecycled PET resinen
dc.titleConcreto polímero com resina reciclada de PET: influência na combustibilidade frente à adição de resíduos industriaispt_BR
dc.typeDissertaçãopt_BR


Files in this item

FilesSizeFormatView
concreto_polimero.pdf4.719Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP